বল, চাপ ও শক্তি

বল, চাপ ও শক্তি(Force, Pressure And Energy)

Science New Shyllabus-2024 Hand Note/ Goudie

নবম শ্রেণীর বিজ্ঞান-2024

2024 সালের নতুন হ্যান্ড নোট বিজ্ঞান

জাতীয় শিক্ষাক্রম ও পাঠ্যপুস্তক বোর্ড কর্তৃক জাতীয় শিক্ষাক্রম- ২০২২ অনুযায়ী প্রণীত এবং ২০২৪ শিক্ষাবর্ষ থেকে নবম শ্রেণির জন্য নির্ধারিত পাঠ্যপুস্তক বিজ্ঞান

অধ্যায় :1

বল, চাপ ও শক্তি

অধ্যায় 1:বল, চাপ ও শক্তি

আর পড়ুন: বল,চাপ ও শক্তি এর কুইজ

এই অধ্যায়ে নিচের বিষয়গুলো আলোচনা করা হয়েছে----

  • নিউটনের প্রথম সূত্র
  • নিউটনের দ্বিতীয় সূত্র
  • বল
  • চার ধরণের বল
  • নিউটনের তৃতীয় সূত্র
  • গতিশক্তি
  • মহাকর্ষ বল

আগের শ্রেণিতে তোমরা গতি সংক্রান্ত রাশিগুলো সম্পর্কে একটু ধারণা পেয়েছ এবং সময়ের সাপেক্ষে এই রাশিগুলো কীভাবে পরিবর্তন হয় সেটি সহজ কিছু গাণিতিক সমীকরণ দিয়ে প্রকাশও করতে শিখেছ। অর্থাৎ তোমাদেরকে শুধুমাত্র সরণ, বেগ, ত্বরণ এরকম রাশিমালার সংজ্ঞার কথা বলে তাদের মাঝে সম্পর্কের সমীকরণগুলো শেখানো হয়েছে। কিন্তু সেই গতিটা কোথা থেকে এসেছে তার পেছনের বিজ্ঞানটুকুর একটুখানি আভাস দেওয়া হলেও সেটি ব্যাখ্যা করা হয়নি। এই অধ্যায়ে প্রথমবারের মত তোমাদেরকে সেই গতি কোথা থেকে আসে এবং বলের সাথে তার সম্পর্ক কী সেটি বলা হবে। 

তোমরা দেখবে নিউটনের তিনটি যুগান্তকারী সূত্র দিয়ে কীভাবে গ্রহ উপগ্রহ থেকে শুরু করে, রকেট কিংবা গাড়ি এমনকি ক্রিকেট বল পর্যন্ত সব কিছুর গতি বিশ্লেষণ করা যায়।

১.১ অনুমিতি, স্বীকার্য, তত্ত্ব ও সূত্র (hypothesis, postulate, theory and law)

নিউটনের তিনটি সূত্র জানার আগে বিজ্ঞানে ‘সূত্র’ বলতে ঠিক কী বোঝায় আমাদের সেটি জেনে নেয়া ভাল। সাধারণ কথাবার্তায়ও আমরা বিভিন্ন সময় অনুমিতি, তত্ত্ব বা সূত্র এই শব্দগুলো ব্যবহার করে থাকি। কিন্তু, বিজ্ঞানীরা যখন এই কথাগুলি ব্যবহার করেন, তার বিশেষ, এবং সুনির্দিষ্ট অর্থ আছে, যেগুলো এরকম:

অনুমিতি (hypothesis): অনুমিতি শব্দটি দিয়েই বোঝা যাচ্ছে এটি অনুমানের সাথে সম্পর্কযুক্ত। কোনও একটি প্রাকৃতিক ঘটনা ব্যাখ্যা করতে চাওয়ার প্রথম ধাপ হল ‘অনুমিতি' অর্থাৎ এটি হচ্ছে একটি সম্ভাব্য ব্যাখ্যাকে ‘অনুমান’ করা। তবে বিজ্ঞানের জগতে ‘অনুমিতি' কিন্তু মোটেও যুক্তিহীনভাবে যেরকম-ইচ্ছা-সেরকম অনুমান করে বসে থাকা নয়। তাঁদের অনুমানটুকুর পেছনে অবশ্যই আগের পরীক্ষণের তথ্য, প্রতিষ্ঠিত সূত্র থেকে পাওয়া হিসেব কিংবা পর্যবেক্ষণের ফলাফল থাকে। সবচেয়ে গুরুত্বপূর্ণ বিষয় হচ্ছে, সবসময়েই পরীক্ষা নিরীক্ষা করে অনুমিতির সত্যাসত্য যাচাই করার সুযোগ থাকে।

স্বীকার্য (postulate): অনুমিতি আমরা পরীক্ষা নিরীক্ষার পর গ্রহণ করতে পারি আবার পরিত্যাগ করতে পারি। কিন্তু স্বীকার্যকে আমরা পরীক্ষা নিরীক্ষা ছাড়াই সত্য বলে ধরে নিই।

তত্ত্ব (theory): বিজ্ঞানীরা একটি 'অনুমিতি' দিলে অন্যান্য বিজ্ঞানীরা সেই অনুমিতিকে পর্যবেক্ষণ বা পরীক্ষণের মাধ্যমে যাচাই করে দেখেন। যেই অনুমিতিগুলো সত্য প্রমাণিত হয় বিজ্ঞানের ভাষায় সেগুলোই ‘তত্ত্ব' নামে পরিচিত। যেই তত্ত্ব যাচাইযোগ্য নয় ধরে নিতে হবে সেটি আসলে বিজ্ঞানের ক্ষেত্র নয়।

সূত্র (law): বিজ্ঞানের ভাষায় সূত্র হল এমন একটি বিবৃতি, যেটি কোনও একটি সুনির্দিষ্ট প্রাকৃতিক ঘটনার বর্ণনা দেয়। সূত্রে সাধারণত বিভিন্ন রাশির গাণিতিক আন্তঃসম্পর্ক উল্লেখ করা হয়, এতে কোনও ব্যাখ্যা থাকে না। একটি সূত্র তত্ত্বের মতই পর্যবেক্ষণ বা পরীক্ষণ দিয়ে প্রতিষ্ঠিত এবং চাইলেই যে কেউ সূত্রটি পরীক্ষা করে যাচাই করতে পারে।

ফিলোসফিয়া ন্যাচারালিস প্রিন্সিপিয়া ম্যাথমেটিকা:

আইজ্যাক নিউটন ছিলেন ব্রিটিশ একজন পদার্থবিজ্ঞানী। প্রায় তিনশত বছর আগে তিনি গতি, মহাকর্ষ এবং আলো ইত্যাদি অনেক বিষয়ে বিশাল অবদান রেখে গেছেন। নিউটন গণিতেও অত্যন্ত পারদর্শী ছিলেন। জার্মান গণিতবিদ লিবনিজ এবং নিউটনকে ক্যালকুলাসের আবিষ্কারক হিসেবে বিবেচনা করা হয়। নিউটন একই সাথে তাত্ত্বিক এবং ব্যবহারিক পরীক্ষণে দক্ষ বিজ্ঞানী ছিলেন। গতি ও মহাকর্ষ নিয়ে তাঁর ভাবনা ছিল পুরোপুরি তাত্ত্বিক আবার আলো সংক্রান্ত অনেক ব্যাপারে তিনি সরাসরি পরীক্ষণের মাধ্যমে অনেক কিছু প্রমাণ করেছেন। এখন যেমন বৈজ্ঞানিক জার্নালের মাধ্যমে বিজ্ঞানীদের কাজগুলো প্রকাশিত হয়, তিন শতাব্দী আগের অবস্থাটি ঠিক এমন ছিল না। তখন কেউ কেউ বই লিখে নিজের কাজ প্রকাশ করতেন। নিউটন লিখেছিলেন ‘ফিলোসফিয়া ন্যাচারালিস প্রিন্সিপিয়া ম্যাথমেটিকা' নামের একটি বই। ল্যাটিন ভাষায় লেখা এই যুগান্তকারী বইটি।

১.২ নিউটনের প্রথম সূত্র

নিউটনের প্রথম সূত্রটিকে অনেক সময় জড়তার সূত্র বলা হয়।

বস্তুর ওপর কোনো বল প্রয়োগ করা না হলে বস্তুটির গতি কেমন হয়, এই সূত্রটি সেই বিষয়টি ব্যাখ্যা করে। সূত্রটি জানার আগে আমাদের স্থিতি জড়তা এবং গতি জড়তা বলতে কী বোঝাই সেটি জানা প্রয়োজন।

১.২.১ স্থিতি ও গতি জড়তা

তোমরা যদি বাসে কিংবা ট্রেনে দাঁড়িয়ে থাক, এবং হঠাৎ বাস কিংবা ট্রেনটি চলতে শুরু করে তখন তোমরা লক্ষ্য করে থাকবে যে তোমরা পিছন দিকে পড়ে যেতে উদ্যত হও। বাস কিংবা ট্রেনের মেঝেতে স্পর্শ করে থাকা তোমার শরীরের নিচের অংশ সামনের দিকে এগিয়ে যেতে শুরু করলেও শরীরের উপরের অংশ তার আগের অবস্থানেই স্থির থাকতে চেষ্টা করে, সেজন্য তোমার শরীরের উপরের অংশ পেছন দিকে হেলে পড়ে, এবং তুমি পড়ে যেতে উদ্যত হও। একটি গ্লাসের ওপরে এক টুকরো শক্ত কাগজ বা কার্ডবোর্ডের ওপর একটি মুদ্রা রেখে তুমি যদি টান দিয়ে কাগজটি সরিয়ে নাও, দেখবে


মুদ্রাটি কাগজের সাথে চলে না এসে গ্লাসের ভেতরেই পড়েছে। অর্থাৎ, কাগজটি সরে গেলেও মুদ্রাটি তার আগের অবস্থানেই থাকার চেষ্টা করেছে। এই যে, স্থির থাকা একটি বস্তু স্থির হয়েই থাকতে চায়, এই ঘটনাকে ‘স্থিতি জড়তা' (Static Inertia) বলে।

চলন্ত গাড়ি হঠাৎ ব্রেক করে থামিয়ে দেয়ার সময়ে হয়তো তোমরা খেয়াল করে দেখেছ, যে এসময় আমাদের শরীর ঝটকা দিয়ে সামনের দিকে হেলে পড়ে। ব্রেক করার কারণে শরীরের নিচের অংশ গাড়ির সাথে থেমে গেছে কিন্তু আমাদের শরীরের উপরে অংশ তখনো গতিশীল রয়ে গেছে, এজন্য 

সেটি সামনে হেলে পড়ে। তোমরা কখনও কাউকে চলন্ত বাস বা ট্রেন থেকে নামতে দেখেছ? যারা এ ব্যাপারে অভিজ্ঞ তারা মাটিতে পা দিয়ে কিন্তু থেমে যায় না খানিকটা দূরত্ব দৌড়ে যায়, তারা জানে মাটিতে নেমে গেলে তাদের পা থেমে যাবে কিন্তু শরীরের বাকী অংশ তখনও গতিশীল রয়ে যাবে, তাই শরীরের নিচের অংশ সমান বেগে ছুটিয়ে না নিলে সে হুমড়ি খেয়ে পড়ে যাবে। এই যে, গতিশীল একটি বস্তু আগের মত গতি বজায় রাখতে চায়- এই ঘটনাকে ‘গতি জড়তা' (Dynamic Inertia) বলে।


আর পড়ুন: বল,চাপ ও শক্তি এর কুইজ

ভাবনার খোরাক: কাঁথা বা কম্বলকে লাঠি দিয়ে পিটিয়ে ধূলা বের করা যায়, কেন?

ভাবনার খোরাক: স্পিন বোলাররা মোটামুটি এক জায়গায় দাঁড়িয়ে থেকে বল করেন, কিন্তু পেস বোলাররা দূর থেকে ছুটে এসে বল করেন। কেন?

১.২.২ নিউটনের প্রথম সূত্র

স্থিতি জড়তা ও গতি জড়তাকে একত্রে বলা হয় জড়তা। অর্থাৎ স্থির বস্তুর স্থির থাকার এবং গতিশীল বস্তুর গতিশীল থাকার যে প্রবণতা, সেটিই হচ্ছে জড়তা। নিউটন তার গতির প্রথম সূত্রে এই জড়তার বিষয়টি বলেছেন।

নিউটনের প্রথম সূত্র: বাইরে থেকে বল প্রয়োগ করা না হলে, স্থির বস্তু স্থিরই থাকবে, এবং সরল রেখায় সমবেগে চলমান বস্তু সরল রেখায় সমবেগে চলতে থাকবে


এই সূত্রটির প্রথম অংশটুকু নিয়ে আমাদের সমস্যা নেই, দৈনন্দিন জীবনে এটি আমরা সবসময়েই দেখে থাকি যে স্থির একটি বস্তুকে ধাক্কা না দিলে সেটি স্থির থাকে, নিজ থেকে নাড়াচড়া করে না। তবে দৈনন্দিন অভিজ্ঞতা থেকে পরের অংশটুকু বুঝতে আমাদের একটু সমস্যা হতে পারে, কারণ গতিশীল 

কোনো বস্তুকেই আমরা অনন্তকাল চলতে দেখি না। এই সমস্যার উত্তর কিন্তু নিউটনের প্রথম সূত্রের শুরুতেই দেয়া আছে, এখানে ‘বাইরে থেকে বলপ্রয়োগ' করার কথা বলা হয়েছে। তুমি যখনই কোন একটা বস্তুকে গতিশীল করবে, তখন ঘর্ষণ কিংবা বাতাসের বাধা ইত্যাদি বল গতির উল্টোদিকে কাজ করে গতিটিকে কমিয়ে দেবে। মহাশূন্যে বাতাস নেই বলে বাতাসের ঘর্ষণ নেই, তাই সেখানে যদি কোন বস্তুকে ধাক্কা দিয়ে ছেড়ে দেওয়া যেতো, তাহলে সেটি অনন্তকাল ধরে একই বেগে চলতে থাকত।


ভাবনার খোরাক: পাশের ছবিতে দেখানো হয়েছে একটা ভারী বস্তু একটি সুতা দিয়ে ঝুলছে, এবং বস্তুটির নিচে বাধা আরেকটি সূতা ঝুলছে। নিচের সূতা ধরে হ্যাঁচকা টান দিলে A অংশের এবং ধীরে ধীরে টান দিলে B অংশের সূতা ছিঁড়বে। কেন?

১.৩ নিউটনের দ্বিতীয় সূত্র ও বল

কোনো বস্তুর উপর বল প্রয়োগ করা না হলে বস্তুর গতি কেমন হয় সেটি নিউটনের প্রথম সূত্রে বলা হয়েছে। তোমরা দেখবে বস্তুর উপর বল প্রয়োগ করা হলে বস্তুর গতি কেমন হয় সেটি নিউটনের দ্বিতীয় সূত্রে ব্যাখ্যা করা হবে। আগের শ্রেণিতে তোমরা জেনেছ যে বেগের পরিবর্তন করতে হলে সেখানে 

বল প্রয়োগ করতে হয়, নিউটনের প্রথম সূত্র সেই বিষয়টি আবার নিশ্চিত করেছে। প্রথম সূত্রে কিন্তু বলের বৈজ্ঞানিক সংজ্ঞা কী কিংবা কীভাবে বল পরিমাপ করতে হয় সে সম্পর্কে কিছু বলা হয়নি, বল পরিমাপের পদ্ধতি পাওয়া যায় নিউটনের দ্বিতীয় সূত্র থেকে।

নিউটনের দ্বিতীয় সূত্রটি জানার আগে তোমাদের নতুন একটি রাশির সাথে পরিচিত হতে হবে, সেটি হচ্ছে ভরবেগ।

১.৩.১ ভরবেগের ধারণা

যদি কেউ বাইসাইকেলে করে 1 ms বেগে তোমার দিকে আসে তাহলে তুমি ইচ্ছে করলেই তার সাইকেলের হ্যান্ডেলে হাত রেখে সেটাকে থামিয়ে দিতে পারবে। কিন্তু কেউ যদি 1 ms বেগে একটা গাড়ি চালিয়ে নিয়ে আসে তুমি কিন্তু তাহলে হাত দিয়ে ধরে গাড়িটা থামাতে পারবে না, যদিও সাইকেল আর 

গাড়ি দুটোই কিন্তু ঠিক একই বেগে গতিশীল ছিল। দুটোর পার্থক্যটা আসলে ভরের, সাইকেল যেমন কম ভরের বা হালকা একটি বস্তু, গাড়ি মোটেই তা নয়, সেটি অনেক বেশি ভরের একটি বস্তু। অর্থাৎ বল প্রয়োগ করে গতি পরিবর্তন করার বেলায় বেগের পাশপাশি এখানে ভর কম বা বেশি হওয়ার একটি ব্যপার আছে।

যদি কেউ একটি ছোট পাথর 1 ms-1 বেগে তোমার দিকে ছুঁড়ে দেয় তুমি খুব সহজেই সেই পাথরটা ধরে ফেলতে পারবে। এবারে সে যদি একটা গুলতি দিয়ে সেই একই পাথর তোমার দিকে 100 ms-1 বেগে ছুড়ে দেয়, তুমি নিশ্চয়ই সেটি ধরার সাহস করবে না। যদিও দুটো একই পাথর, অর্থাৎ তাদের 

একই ভর, কিন্তু দুই ক্ষেত্রে পাথরটি একই বেগে গতিশীল নয়। বোঝাই যাচ্ছে, পার্থক্যটা এক্ষেত্রে বেগের। অর্থাৎ, বল প্রয়োগ করে গতি পরিবর্তন করার বেলায় ভরের পাশপাশি এখানে বেগ কম বা বেশি হওয়ার একটি ব্যপারও আছে।

এই দুটি উদাহরণ থেকে তোমরা বুঝতে পারছ যে, বল প্রয়োগ করে বস্তুর গতি পরিবর্তন, বস্তুর ভর এবং বস্তুর বেগ দুটোর উপরেই নির্ভরশীল। সে কারণে ভর এবং বেগের সমন্বয়ে একটি নূতন রাশির প্রয়োজন হয়, তার নাম ভরবেগ (momentum)। এটি আসলে ভর এবং বেগের গুণফল। তোমাদের ধারণা হতে পারে, যেহেতু ভর এবং বেগ নামে দুটি রাশি রয়েছে, তাই তাদের গুণফল দিয়ে আরেকটি নূতন রাশি সৃষ্টি করার কোনো প্রয়োজন

 ছিল না। আমাদের দৈনন্দিন পরিচিত জীবনের জন্য তোমাদের ধারণা সত্যি, কিন্তু তোমরা জেনে অবাক হবে, যখন কোন বস্তুর বেগ আলোর বেগের কাছাকাছি পৌঁছে যায় তখন ভরবেগ আর শুধুমাত্র ভর এবং বেগের গুণফল নয়। শধু তাই নয় আলোর কণার (ফোটন) ভর শূন্য কিন্তু তার ভরবেগ শূন্য নয়! উপরের ক্লাসে গিয়ে তোমরা সেটি আরও বিস্তারিত ভাবে জানবে। আপাতত আমরা ভরবেগ বলতে ভর ও বেগের গুণফলই বোঝাব।

ভরবেগকে প্রকাশ করা হয় ইংরেজি p অক্ষর দিয়ে, ভর এবং বেগ যদি যথাক্রমে m এবং v হয় তাহলে p = mv এবং ভরবেগের একক পাওয়া

যায় ভরের একক (kg) এবং বেগের একক (ms) গুণ করে৷ অর্থাৎ kg ms-1 হলো ভরবেগের একক। বেগের যেহেতু দিক আছে, তাই ভরবেগেরও দিক আছে, বস্তুটির বেগের দিকই হচ্ছে তার ভরবেগের দিক।

উদাহরণ: আগের অনুচ্ছেদে সাইকেল, গাড়ি এবং পাথরের বেগের মান দেওয়া হয়েছিল, ভরের মান দেওয়া হয়নি। যদি সাইকেলের ভর 75 kg, গাড়ীর, ভর 2000 kg এবং পাথরের ভর 5 g হয়, তাহলে চারটি ক্ষেত্রেই ভরবেগ কত?

সমাধান: সাইকেলের ভরবেগ p = m V1 = 75 × 175 kg ms t
গাড়ির ভরবেগ p2 = m2 V2 = 2000 x 1 = 2000 kg ms-1
হাতে ছোঁড়া পাথরের ভরবেগ P3 = m3V3 = 0.005 × 1 = 0.005 kg ms-1 
গুলতিতে ছোঁড়া পাথরের ভরবেগ ps = m3V3 = 0.005 x 100 0.5kg ms-1

পরিবর্তনের হার

নিউটনের দ্বিতীয় সূত্রটি বোঝার জন্য আমাদের আরো একটি বিষয় সম্পর্কে সুস্পষ্ট ধারণা করে নিতে হবে, সেটি হচ্ছে পরিবর্তনের হার। পরিবর্তন 

শব্দটির সাথে আমরা সবাই পরিচিত, যে কোন একটি রাশির মান যদি বেড়ে যায় কিংবা কমে যায় তাহলে আমরা বলি রাশিটির পরিবর্তন হয়েছে। যেটুকু বেড়েছে কিংবা কমেছে সেটা হচ্ছে পরিবর্তনের মান। কত দ্রুত পরিবর্তনটি হচ্ছে সেটা বোঝানোর জন্য আমরা পরিবর্তনের হার কথাটি ব্যবহার করি।

ধরা যাক তুমি এবং তোমার বন্ধু সাইকেল চালাতে বের হয়েছ, দুজনেই স্থির অবস্থা থেকে শুরু করে 10ms বেগে পৌঁছে গেছ, এটি করতে তোমার সময় লেগেছে 2 সেকেন্ড এবং তোমার বন্ধুর লেগেছে 2.5 সেকেন্ড। আমরা হিসেব না করেই বলে দিতে পারি তোমার বেগের পরিবর্তনের হার বেশি কারণ তুমি কম সময়ে একই বেগে পৌঁছে গেছ। যদি হিসাব করতে যাই, তাহলে,

তোমার বেগের পরিবর্তনের হার - (10 ms-1 - 0)/2s = 5 ms 2

তোমার বন্ধুর বেগের পরিবর্তনের হার - (10 ms1 - 0)/2.5s = 4 ms-2

হিসেব করে আমরা একই উত্তর পেয়েছি। ধরা যাক আবার তুমি এবং তোমার বন্ধু সাইকেল চালাতে বের হয়েছ, এবারেও দুজনেই স্থির অবস্থা থেকে শুরু করে 5s সাইকেল চালিয়ে দেখেছ তোমার বেগ 20 ms-1 এবং তোমার বন্ধুর বেগ 25 ms । এবারেও আমরা হিসেব না করেই বলে দিতে পারি 

এবারে তোমার বন্ধুর বেগের পরিবর্তনের হার বেশি কারণ একই সময় সাইকেল চালিয়ে তার বেগের মান বেশি হয়েছে। যদি হিসাব করতে যাই তাহলে,

তোমার বেগের পরিবর্তনের হার = (20 ms-1 - 0)/5s = 4 ms"

তোমার বন্ধুর বেগের পরিবর্তনের হার  = (25 ms1 - 0)/5s = 5 ms"

এবারেও হিসেব করে আমরা একই উত্তর পেয়েছি। কাজেই তোমরা নিশ্চয়ই বুঝতে পারছ সময়ের সাথে একটি রাশির পরিবর্তনের অনুপাতকে বলা হয় 

পরিবর্তনের হার। আগের শ্রেণিতে আমরা বেগ ও ত্বরণ সম্পর্কে জেনেছিলাম। এখন আমরা বলতে পারি, সেখানে বেগ ছিল সময়ের সাথে সরণের 

পরিবর্তনের হার, এবং ত্বরণ ছিল সময়ের সাথে বেগের পরিবর্তনের হার।

উদাহরণ: আগের অনুচ্ছেদের উদাহরণে প্রতিটি বস্তুকে ১ মিনিটে থামিয়ে দিলে, প্রতিক্ষেত্রে ভরবেগের পরিবর্তনের হার কত হবে?

সমাধান: ভরবেগ পরিবর্তনের হার = (আদি ভরবেগ - শেষ ভরবেগ)/অতিক্রান্ত সময় 

এখানে, বস্তুগুলোকে থামিয়ে দেয়া হচ্ছে, অর্থাৎ শেষবেগ শূন্য, তাই শেষ ভরবেগও শূন্য 

সাইকেলের ক্ষেত্রে ভরবেগ পরিবর্তনের হার = (75 - 0) / 60 = 1.25 kg ms -2

গাড়ির ক্ষেত্রে ভরবেগ পরিবর্তনের হার ( 2000 - 0) / 60 = 33.33 kg ms 2 

হাতে ছোঁড়া পাথরের ক্ষেত্রে ভরবেগ পরিবর্তনের হার = (0.005 - 0)/60 = 8.33 x 105 kg ms 2

গুলতিতে ছোঁড়া পাথরের ক্ষেত্রে ভরবেগ পরিবর্তনের হার = (0.5 - 0)/60 = 8.33 x 103 kg ms 2


১.৩.২ নিউটনের দ্বিতীয় সূত্র

নিউটনের দ্বিতীয় সূত্র পদার্থবিজ্ঞানের সবচেয়ে গুরত্বপূর্ণ সূত্রগুলির একটি। এই সহজ সরল সূত্রটি দিয়ে আমাদের পরিচিত জগতের গতি সংক্রান্ত প্রায় সব কাজই করে ফেলা যায়। বাচ্চাদের মার্বেল খেলা থেকে শুরু করে মহাকাশগামী রকেট দুটিই এই সূত্রটি দিয়ে ব্যাখ্যা করা সম্ভব। তোমরা ইতোমধ্যে পরমাণুর কতো ক্ষুদ্ৰ জেনেছ, আবার আলোর বেগ কতো বেশি সেটিও জেনেছ, এই দুটি ক্ষেত্রে—

অর্থাৎ, পরমাণুর আকারের সঙ্গে তুলনীয় মাত্রার 

অতি ক্ষুদ্র দৈর্ঘ্য কিংবা আলোর বেগের সঙ্গে তুলনীয় মাত্রার অতি বৃহৎ গতির ক্ষেত্রে নিউটনের সূত্র কার্যকর হয় না। প্রথম ক্ষেত্রে প্রয়োজন হয় কোয়ান্টাম তত্ত্বের, আর দ্বিতীয় ক্ষেত্রে প্রয়োজন হয় আপেক্ষিক তত্ত্বের, পরের একটি অধ্যায়ে তোমরা এই দুটি বিষয় সম্পর্কেই জানতে পারবে। দৈনন্দিন জীবনে আমরা যেহেতু এর কাছাকাছি মাত্রাতেও যাই না, তাই এদের প্রয়োজনটুকুও আমরা আলাদাভাবে অনুভব করতে পারি না। আমাদের চারপাশের দৃশ্যমান জগতের প্রায় সব কাজেকর্মে নিউটনের দ্বিতীয় সূত্র একেবারে নিখুঁতভাবে ব্যবহার করা যায়। নিউটনের দ্বিতীয় সূত্রটি এরকম:

নিউটনের দ্বিতীয় সূত্র: 

কোনো বস্তুর ভরবেগের পরিবর্তনের হার এর উপরে প্রযুক্ত বলের সমানুপাতিক, এবং বল যেদিকে কাজ করে, ভরবেগের পরিবর্তনও সেদিকেই হয়ে থাকে।

নিউটনের দ্বিতীয় সূত্রে বল এবং ভরবেগ পরিবর্তনের হারের মাঝে সমানুপাতিক সম্পর্কের কথা বলা হয়েছে। মনে করো, m ভরের একটি বস্তু u 

বেগে চলছিল, বাইরে থেকে এর উপরে t সময় ধরে F পরিমাণ বল প্রয়োগ করায়, বেগ বদলে হল v। অর্থাৎ, বল প্রয়োগের শুরুতে ভরবেগ 

ছিল mu এবং বল প্রয়োগের শেষে ভরবেগ হল mv, সেক্ষেত্রে ভরবেগের পরিবর্তন হবে এদের পার্থক্য,

অর্থাৎ, ভরবেগের পরিবর্তন = mv - mu

তাহলে, ভরবেগ পরিবর্তনের হার = (mv - mu)/t

যেহেতু ভরের কোন পরিবর্তন হয়নি তাই ভরবেগ পরিবর্তনের হার = m(v - u)/t 

কিন্তু আমরা জানি ত্বরণ a = (v - u)/t

কাজেই ভরবেগ পরিবর্তনের হার = ma

নিউটনের সূত্র অনুযায়ী ভরবেগ পরিবর্তনের হার প্রযুক্ত বলের সমানুপাতিক, অর্থাৎ

ma ox F অথবা Fox ma

আমরা এটিকে সমানুপাতিক সম্পর্ক হিসেবে না লিখে যদি একটি সমীকরণ আকারে লিখতে চাই, তাহলে একটি সমানুপাতিক ধ্রুবকের দরকার হবে। 

অর্থাৎ আমরা লিখব এভাবে,

F = kma

যেখানে k হচ্ছে সমানুপাতিক ধ্রুবক। যেহেতু নিউটনের দ্বিতীয় সূত্রে সমানুপাতিক ধ্রুবকের মান কত সেটি নিয়ে কিছু বলা নেই তাই সেটি পরীক্ষা নিরীক্ষা করে বের করে নিতে হবে। অর্থাৎ একটি নির্দিষ্ট ভরের (m) বস্তুর উপর নির্দিষ্ট পরিমাণ বল (F) প্রয়োগ করে দেখতে হবে কতটুকু ত্বরণ (a) হয়েছে তাহলে সমানুপাতিক ধ্রুবকের (k) মান বের হয়ে যাবে। কিন্তু এখানে একটা অত্যন্ত চমকপ্রদ ঘটনা ঘটেছিল। 'নির্দিষ্ট পরিমাণ 

বল' বলতে কী বোঝানো হবে সেটি কোথাও বলা নেই কারণ বল ব্যাপারটিকে তখন পর্যন্ত পরিমাপ করার পদ্ধতি ঠিক করা হয়নি!কাজেই বিজ্ঞানীরা ঠিক করলেন নিউটনের দ্বিতীয় সূত্রটি দিয়েই বল পরিমাপ করা হবে! অর্থাৎ ঠিক করা হোল, যে পরিমাণ বল প্রয়োগ করা হলে 

একক ভরের একক ত্বরণ হয় সেটিই হচ্ছে একক বল। অর্থাৎ, m=1 এবং a=1 হলে F=1 হবে। তাহলে আর আলাদা করে k এর মান বের করতে হয় না, কারণ তখন k এর মান হয়ে যায় 1 ! এইভাবে নিউটনের দ্বিতীয় সূত্রটি খুব চমৎকার সহজ একটি রূপ নিয়ে নেয়;

F = ma

নিউটনের স্মৃতির প্রতি শ্রদ্ধা জানিয়ে বলের এককের নাম দেওয়া হয়েছে Newton (সংক্ষেপে N) অর্থাৎ 1 kg ভরের একটি বস্তুকে 1 ms ত্বরণে গতিশীল করতে যতটুকু বল প্রয়োজন হয়, সেটিই ঠিক 1 N পরিমাণ। বল যেহেতু ভরবেগের পরিবর্তনের হার, এবং ভরবেগের যেহেতু সুনির্দিষ্ট দিক আছে তাই বলেরও সুনির্দিষ্ট দিক আছে।

উদাহরণ: আগের অনুচ্ছেদের উদাহরণে প্রতিটি বস্তুর উপরে কী পরিমাণ বল প্রয়োগ করা হয়েছে?

সমাধান: যেহেতু, বল = ভরবেগ পরিবর্তনের হার

সাইকেলের উপরে প্রযুক্ত বল = 1.25 N
গাড়ির উপরে প্রযুক্ত বল = 33.33 N
হাতে ছোঁড়া পাথরের উপরে প্রযুক্ত বল = 8.33 x 10-5 N
গুলতিতে ছোঁড়া পাথরের উপরে প্রযুক্ত বল = 8.33 x 103 N

উদাহরণ: 50 ms-1 বেগে চলমান 750 kg ভরের একটি গাড়ির বেগ 10 s সময়ে বৃদ্ধি পেয়ে 70 ms-1 হল,গাড়ির ইঞ্জিন কি পরিমাণ বল প্রয়োগ করেছে?

সমাধান:  এখানে, গাড়িটির ত্বরণ a = (v-u)/t = (70-50)/2 = 10 ms-2
গাড়িটির ভর m = 750 kg
অর্থাৎ, ইঞ্জিনের প্রযুক্ত বল  F= ma = 750 x 10 = 7500 N

১.৪ মৌলিক বলের ধারণা

তোমাদের ধারণা হতে পারে পৃথিবীতে অনেক ধরনের বল রয়েছে! একটি রেল-ইঞ্জিন যখন যাত্রীবোঝাই রেলগাড়ি টেনে নিয়ে যায় সেটি একটা বল, ঝড়ে যখন ঘরবাড়ি উড়ে যায় সেটি একটা বল, চুম্বকের আকর্ষণ বা বিকর্ষণ একটি বল, ক্রিকেটারেরা যখন ছক্কা মারেন তখন ব্যাট দিয়ে ক্রিকেট বলে যেটা প্রয়োগ করেন সেটি একটি বল, ক্রেন যখন কোনো ভারী মালামাল টেনে তুলে সেটিও একটি বল—তুমি আসলে বলে শেষ করতে পারবে না! তোমার চারপাশে এত বিভিন্ন রূপের বল দেখা গেলেও বিজ্ঞানের চমকপ্রদ ব্যাপারটি হলো, প্রকৃতিতে আসলে মাত্র চার রকমের বল রয়েছে! সেগুলো হচ্ছে:

  • মহাকর্ষ বল
  • তড়িৎ চৌম্বক বা বিদ্যুৎ চৌম্বকীয় বল
  • দুর্বল নিউক্লিয় বল ও 
  • সবল নিউক্লিয় বল। 

আশপাশের বলগুলোকে বিশ্লেষণ করা হলে দেখা যাবে ঘুরে-ফিরে এই চার রকমের বাইরে কোনোটা নয়! এদের বলা হয় মৌলিক বল। তার মাঝে আমাদের দৈনন্দিন জীবনে আমরা শুধু মহাকর্ষ বল আর বিদ্যুৎ চৌম্বকীয় বল অনুভব করি, অন্য দুটি প্রকৃতিতে থাকলেও সহজে আমাদের চোখে পড়ে না ।

চার ধরনের বল

এই সৃষ্টিজগতের সকল বস্তু তাদের ভরের কারণে একে অপরকে যে বল দিয়ে আকর্ষণ করে সেটাই হচ্ছে মহাকর্ষ বল। এই মহাকর্ষ বলের কারণে গ্যালাক্সির ভেতরে নক্ষত্রেরা ঘুরপাক খায় কিংবা সূর্যকে ঘিরে পৃথিবী ঘোরে, পৃথিবীকে ঘিরে চাঁদ ঘোরে! পৃথিবীর মহাকর্ষ বল যখন আমাদের ওপর কাজ করে আমরা সেটাকে বলি মাধ্যাকর্ষণ।

চিরুনি দিয়ে চুল আঁচড়ে সেটা দিয়ে কাগজের টুকরোকে আকর্ষণ করা বা চুম্বক দিয়ে অন্য চুম্বককে আকর্ষণ- বিকর্ষণ আমাদের অনেকেই কখনো না কখনো করেছি। যদিও তড়িৎ বা বিদ্যুৎ এবং চুম্বকের বলকে আলাদা ধরনের বল মনে হয় আসলে দুটি একই বল। এর নাম তড়িৎ চৌম্বক বল বা বিদ্যুৎ চৌম্বকীয় বল।

তৃতীয় মৌলিক বলের নাম দূর্বল নিউক্লিয় বল। পরমাণুর নিউক্লিয়াসে প্রোটনের সাথে যে নিউট্রন থাকে সেগুলো নিউক্লিয়াসের ভেতরে স্থিতিশীল, কিন্তু মুক্ত অবস্থায় থাকলে দশ মিনিটের মাঝে প্রোটন, ইলেকট্রন ও নিউট্রনে বিভাজিত হয়ে যায়। এই প্রক্রিয়াটি বেটা (B) তেজস্কৃয়তা নামে পরিচিত এবংএটি ঘটে দুর্বল নিউক্লিয়ার বলের কারণে।সব শেষের মৌলিক বলের নাম সবল নিউক্লিয় বল। পরমাণুর কেন্দ্রে যে নিউক্লিয়াস রয়েছে তার ভেতরকার প্রোটন এবং নিউট্রনের নিজেদের মাঝে এই প্রচণ্ড শক্তিশালী বল কাজ করে নিজেদের আটকে রাখে। এই বলের কারণে নিউক্লিয়াসের ভেতরে সঞ্চিত বিশাল শক্তি মুক্ত করে নিউক্লিয়ার শক্তি কেন্দ্রে বিদ্যুৎ উৎপাদন করা সম্ভব হয়।

মৌলিক বলসমূহে মানের তারতম্য

এই চারটি মৌলিক বলের তুলনা করতে গেলে দেখা যায়, এদের মানের বেশ তারতম্য রয়েছে। যেমন পদার্থবিজ্ঞানের প্রথম মৌলিক বলটি হচ্ছে মহাকর্ষ বল, যা দৈনন্দিন জীবনে আমরা সারাক্ষণ অনুভব করে থাকি। ভর আছে সেরকম যেকোনো বস্তু অন্য বস্তুকে মহাকর্ষ বল দিয়ে আকর্ষণ করে। 

এটি খুবই চমকপ্রদ ব্যপার যে, বাকি বলগুলোর তুলনায় এই বলটি সবচেয়ে দূর্বল।তড়িৎ চৌম্বক বল বা বিদ্যুৎ চৌম্বকীয় বল আকর্ষণ এবং বিকর্ষণ দুটোই করতে পারে, অন্যগুলো শুধু আকর্ষণ করতে পারে বিকর্ষণ করতে পারে না। মাধ্যাকর্ষণ শক্তির তুলনায় এই বল 106 গুণ বেশি শক্তিশালী। কথাটি যে সত্যি সেটা খুব সহজেই যাচাই করে দেখা যায়। একটা চিরুনি দিয়ে চুল আঁচড়ে 

একটুকরো কাগজকে সহজেই আকর্ষণ করে তুলে নেওয়া যায়। তখন সেই টুকরো কাগজটিকে পৃথিবী তার সমস্ত মহাকর্ষ বল দিয়ে টেনে রাখার চেষ্টা করে, তবু চিরুনির অল্প একটু বিদ্যুৎ সেই বিশাল পৃথিবীর পুরো মাধ্যাকর্ষণকে হারিয়ে দেয়।

দুর্বল নিউক্লিয় বলকে দুর্বল বলা হয় কারণ এটা তড়িৎ চৌম্বক বল থেকে প্রায় একশ বিলিওন গুণ (10-11) দুর্বল তারপরেও মহাকর্ষ বল থেকে অনেক বেশি শক্তিশালী।

সৃষ্টিজগতের সবচেয়ে শক্তিশালী বল হল সবল নিউক্লিয় বল, যা তড়িৎ চৌম্বক বল থেকেও প্রায় একশ গুণ বেশি শক্তিশালী। এই বলের কারণেই তড়িত-চৌম্বক বিকর্ষণ বলের বিরুদ্ধে প্রোটন ও নিউট্রন পরমাণুর নিউক্লিয়াসে খুব কাছাকাছি থাকতে পারে।

মৌলিক বলসমূহে পাল্লার তারতম্য

আগের অনুচ্ছেদে চারটি মৌলিক বলের মানের পার্থক্য জানার পরে তোমাদের মনে নিশ্চয় প্রশ্ন জেগেছে, সবল নিউক্লিয় বল যেহেতু এতটাই শক্তিশালী, 

তাহলে অন্যান্য দুর্বল বলগুলো টিকে আছে কেমন করে? এই প্রশ্ন খুবই যৌক্তিক, কিন্তু এতক্ষণ মৌলিক বলগুলোর মানের কথাই বলা হয়েছে, কিন্তু সেই বল কত দূরত্বে কার্যকর থাকে সেটি বলা হয়নি। কোনো বল যতদূর পর্যন্ত প্রভাব বিস্তার করতে পারে তাকে ঐ বলের পাল্লা (range) বলে। 

মহাকর্ষ এবং তড়িৎ চৌম্বক বল যেকোনো দূরত্ব থেকে কাজ করতে পারে, তাই এদের পাল্লা হলো অসীম। অনেক দূরত্বে গেলে এই বলের প্রভাব খুব দূর্বল হয়ে পড়ে, কিন্তু কখনোই শূন্য হয় না। এজন্যই অত্যন্ত দুর্বল মান সত্ত্বেও মহাকর্ষ বলের প্রভাবেই কিন্তু সৌরজগত থেকে শুরু করে বিশালাকারের গ্যালাক্সিগুলো টিকে আছে।

অন্যদিকে, নিউক্লিয় বলগুলো খুবই অল্প দূরত্বে কাজ করে। যেমন সবল নিউক্লিয় বল কাজ করে 105 m দূরত্বে আর দূর্বল নিউক্লিয় বল কাজ করে আরও এক হাজার গুণ কম 102 m দূরত্বে। নিউক্লিয় বলের পাল্লা বেশি হলে মহাকর্ষের আকর্ষণ বল কিংবা তড়িৎ-চৌম্বক বলের চেয়েও সবল এই বলের প্রভাবে গ্যালাক্সী থেকে শুরু করে অণু-পরমাণু কিছুই গঠিত হতে পারত না, তার অর্থ এই মহাবিশ্বের অস্তিত্বই থাকত না।

চিন্তার খোরাক: 

মহাকর্ষ এবং তড়িৎ চৌম্বক বল যেকোনো দূরত্ব থেকে কাজ করতে পারে, কিন্তু তড়িৎ চৌম্বক বল মহাকর্ষ বল থেকে গুণ 1036 বেশি শক্তিশালী হওয়ার পরেও মহাজাগতিক দূরত্বে মহাকর্ষ বলকে সবচেয়ে বেশি কার্যকর হতে দেখি কেন?

১.৫ নিউটনের তৃতীয় সূত্র

নিউটনের প্রথম সূত্র থেকে বস্তুর উপরে কোনো বল প্রয়োগ করা না হলে কি ঘটে সেটি আমরা জেনেছি। আর বস্তুতে বল প্রয়োগ করা হলে কি ঘটে সেটি জেনেছি নিউটনের দ্বিতীয় সূত্র থেকে। একটি বস্তু যখন অন্য আরেকটি বস্তুর ওপরে বল প্রয়োগ করে, তখন বস্তু দুইটির মাঝে কী ক্রিয়া-প্রতিক্রিয়া হয়, সেটি আমরা জানব নিউটনের তৃতীয় সূত্র থেকে। আমাদের হাঁটা কিংবা দৌড়ানোর পেছনে আছে নিউটনের তৃতীয় সূত্র, 

জেটবিমানের ইঞ্জিন কিংবা মহাশুন্যগামী রকেটের ইঞ্জিনেও ব্যবহৃত হয় নিউটনের তৃতীয় সূত্র।

১.৫.১ নিউটনের তৃতীয় সুত্র বিবৃতি ও বাখা

নিউটনের প্রথম এবং দ্বিতীয় সূত্র আলোচনা করার সময় আমরা বল প্রয়োগ করার কথা বলেছি, কিন্তু কে কিংবা কী বল প্রয়োগ করছে সেটি বলিনি। বাস্তব জীবনে সবসময়েই কোনো না কোনো বস্তুর মাধ্যমে অন্য বস্তুর উপরে বল প্রয়োগ করা হয়। যখন একটি বস্তু অন্য বস্তুর উপর বল প্রয়োগ করে তখন বস্তু দুটির মাঝে কী ক্রিয়া প্রতিক্রিয়া ঘটে নিউটনের তৃতীয় সূত্র আমাদের সেটি জানিয়ে দেয়।



অনেকভাবে নিউটনের তৃতীয় সূত্রটি লেখা হয়ে থাকে কিন্তু বোঝার জন্য সহজ এবং স্পষ্টভাবে লেখা যেতে পারে এভাবে:

নিউটনের তৃতীয় সূত্র: 

যখন একটি বস্তু অন্য বস্তুর উপর বল প্রয়োগ করে তখন সেই বস্তুটিও প্রথম বস্তুর উপর বিপরীত দিকে সমান বল প্রয়োগ করে।

প্রয়োগ করা বলটিকে অনেক সময় ক্রিয়া (action) এবং বিপরীত দিকে ফিরে পাওয়া বলটিকে প্রতিক্রিয়া (reaction) বলা হয়। তোমরা দেখতে পাচ্ছ, বল কখনো আলাদা একা থাকে না, এটি সবসময়েই জোড়া হিসেবে আসে—অর্থাৎ ক্রিয়া থাকলে অবশ্যই তার প্রতিক্রিয়া থাকবে। আলাদাভাবে শুধু ক্রিয়া কিংবা শুধু প্রতিক্রিয়া কখনোই পাওয়া সম্ভব নয়।



নিউটনের তৃতীয় সূত্র শেখার সময় একটি বিষয় নিয়ে অনেক সময় বিভ্রান্তি হয় যে, দুইটি বল যদি একটি অন্যটির সমান এবং বিপরীত দিকে হয়ে থাকে তাহলে কেন একটি অন্যটিকে বাতিল করে দেয় না? এ জন্য তৃতীয় সূত্রটি শেখার আগে খুব স্পষ্ট করে বোঝা দরকার যে, যদি দুটি আলাদা বস্তু A 

এবং B থাকে, এবং A যখন B বস্তুর ওপর বল প্রয়োগ করে তখন B বল প্রয়োগ করে A বস্তুটির উপরে। অর্থাৎ, দুটি বল সমান এবং বিপরীত কিন্তু তারা দুটি ভিন্ন ভিন্ন বস্তুতে কাজ করে, কখনোই এক বস্তুতে নয়। যদি একই বস্তুতে দুটি বল প্রয়োগ করা হতো শুধু তাহলেই একে অপরকে বাতিল করে দিতে পারত, এখানে তার কোনো সুযোগ নেই। এই আলাদা দুটি বস্তুতে প্রযুক্ত বল দুটির একটি ক্রিয়া, অন্যটি প্রতিক্রিয়া। কয়েকটা উদাহরণ দিলে বিষয়টি আরও স্পষ্ট হয়ে উঠবে।

তুমি যদি কোন ভারী টেবিলকে ধাক্কা দাও তাহলে টের পাবে টেবিলটাও তোমাকে পাল্টা ধাক্কা দিচ্ছে। দেখতেই পাচ্ছ এখানে বস্তু দুইটি, একটি তুমি নিজে, আর অন্যটি হলো টেবিল। তুমি একটি বল (বা ক্রিয়া) প্রয়োগ করেছ টেবিলের উপরে, সে কারণে টেবিলটিও একটি বল (বা প্রতিক্রিয়া) দিয়েছে তোমার উপরে। এই হল ক্রিয়া ও প্রতিক্রিয়া। তোমার যদি শূন্যে একটা ঘুষি মারতে হয়, তুমি সম্ভবত আপত্তি করবে না, কারণ বাতাসের উপর আর কতটুকু বা বল প্রয়োগ করা যায়। কিন্তু তোমাকে যদি কঠিন একটি কংক্রিটের দেওয়ালে সজোরে ঘুষি মারতে বলা হয়, তুমি নিশ্চয়ই রাজী হবে না, কারণ কংক্রিটের প্রতিক্রিয়ায় তুমি যথেষ্ট ব্যথা পাবে।


নিউটনের তৃতীয় সূত্র বোঝার সবচেয়ে সহজ উপায় হচ্ছে একজন কীভাবে হাঁটে সেটি বোঝা। স্থির অবস্থা থেকে একজন হাঁটতে পারে, তার অর্থ হাঁটার সময় একটি ত্বরণ হয়, যার অর্থ হাঁটার জন্য বল প্রয়োগ করতে হয়। কিন্তু আমরা সবাই জানি কেউ যখন হাঁটে তখন কেউ তাদের উপর বল প্রয়োগ করে না, তাহলে বলটি আসে কোথা থেকে? ক্রিয়া ও প্রতিক্রিয়ার ধারণা না থাকলে আমরা কখনোই হাঁটার বিষয়টা ব্যাখ্যা করতে পারতাম না। 



কেউ যখন হাঁটে তখন সে পা দিয়ে মাটিতে বল প্রয়োগ করে (অর্থাৎ, ক্রিয়া করে) তখন মাটিও তার শরীরে পাল্টা বল প্রয়োগ করে (অর্থাৎ, প্রতিক্রিয়া করে )। এই প্রতিক্রিয়ার কারণেই একজন হাঁটতে পারে! সেজন্য খুবই পিচ্ছিল জায়গায় হাঁটা যায় না। পিচ্ছিল জায়গায় মেঝেতে পা দিয়ে পিছন দিকে বল প্রয়োগ করা যায় না, পা পিছলে যায়। সে কারণে ক্রিয়া নামের বলটি প্রয়োগ করা যায় না বলে প্রতিক্রিয়ার বলটি পাওয়া যায় না।

কিংবা প্লেনের জেট ইঞ্জিনে কিংবা রকেটেও একই ব্যাপার ঘটে। ইঞ্জিন থেকে উত্তপ্ত গ্যাস পিছন দিকে প্রচণ্ড বেগে বের হয়ে আসে, তার প্রতিক্রিয়ায় প্লেন কিংবা রকেট সামনের দিকে এগিয়ে যায়।

উদাহরণ: একটি চেয়ার সর্বোচ্চ 525 N প্রতিক্রিয়া বল দিতে পারে। তোমার ভর 50 Kg এবং তোমার বন্ধুর ভর 55 Kg হলে, তোমরা কি এই চেয়ারে 

উঠে দাঁড়াতে পারবে?


সমাধান: তোমার ওজন = 50 x 9.8 = 490 N

তোমার বন্ধুর ওজন = 55 x 9.8 = 539 N

এখানে, চেয়ারের উপরে উঠে দাঁড়ালে ওজনই ক্রিয়া হিসাবে কাজ করবে। 

অর্থাৎ, চেয়ারকেও ঠিক ওজনের সমান বল প্রতিক্রিয়া হিসাবে দিতে হবে।

এখন 490 N < 525 N, অর্থাৎ তুমি চেয়ারে উঠে দাঁড়াতে পারবে।

আবার 539 N > 525 N, অর্থাৎ তোমার বন্ধু চেয়ারে উঠে দাঁড়াতে পারবে না, চেয়ার ভেঙে যাবে।

১.৬ মহাকর্ষ বল

নিউটনের গতি সূত্রগুলো থেকে আমরা বল সম্পর্কে একটি ধারণা পেয়েছি। আমরা চার রকমের মৌলিক বল নিয়ে আলোচনা করেছি কিন্তু সেগুলোর কোনটির সাথে এখনও পরিচিত হইনি। নিউটন তার মহাকর্ষ সূত্র দিয়ে প্রথম গাণিতিকভাবে আমাদের এই চারটি মৌলিক বলের একটির সাথে পরিচয় 

করিয়ে দিয়েছিলেন। এবারে একটি নির্দিষ্ট বলের উদাহরণ হিসেবে আমরা সেই মহাকর্ষ বল নিয়ে আলোচনা করতে পারি।

তথ্য থেকে সূত্র

পৃথিবীর অনুসন্ধিৎসু মানুষেরা অনেকে আগে থেকেই রাতের পর রাত আকাশের দিকে তাকিয়ে থেকেছে, গ্রহ নক্ষত্রের গতি বোঝার চেষ্টা করেছে।

 যারা বুদ্ধিমান তাঁরা এই পর্যবেক্ষণ থেকে গ্রহ নক্ষত্রের গতিবিধির মাঝে মিল খুঁজে পেয়েছে, অনেকে ঋতু পরিবর্তন কিংবা বিভিন্ন প্রাকৃতিক ঘটনার সম্ভাব্য সময়ের সাথে এই গ্রহ নক্ষত্রের অবস্থানের সম্পর্ক আবিষ্কার করেছে। ধীরে ধীরে পর্যবেক্ষণ হয়ে উঠেছে বিজ্ঞানের একটি গুরুত্বপূর্ণ অংশ। 

তবে বিচ্ছিন্নভাবে পর্যবেক্ষণ করাই যথেষ্ট নয়, কাজে লাগাতে চাইলে কিংবা গাণিতিক সূত্রায়ন খুঁজে বের করার জন্য প্রয়োজন সুবিন্যস্ত পূর্নাঙ্গ তথ্য।টাইকো ব্রাহে ছিলেন ডেনিস একজন জোতির্বিজ্ঞানী, তথ্যের জন্য তিনি রাতের পর রাত আকাশ পর্যবেক্ষণ করে বিভিন্ন সময়ে একটি খাতায় গ্রহদের 

অবস্থান লিখে রেখেছিলেন। নিকোলাস কোপার্নিকাস ততদিনে সুর্যকেন্দ্রিক সৌরজগতের কথা বলেছেন, টাইকো ব্রাহে সেটি অন্য গ্রহের জন্য সত্যি হিসেবে মেনে নিলেও পৃথিবীর জন্য প্রযোজ্য সেটি বিশ্বাস করতেন না! টাইকো ব্রাহে বিপুল পরিমাণ নিখুঁত তথ্য সংগ্রহ করেছিলেন কিন্তু সেগুলো বিশ্লেষণের সুযোগ পাননি। তাঁর মৃত্যুর পরে এই খাতা হাতে আসে তার সহকারী জোতির্বিজ্ঞানী জোহানেসকেপলারের কাছে। কেপলার এই বিপুল পরিমাণ তথ্য বিশ্লেষণ করেন এবং সঠিক সুর্যকেন্দ্রিক হিসেবে সবগুলো গ্রহের গতির জন্য তিনটি গাণিতিক সূত্র নির্ণয় করেন। এভাবেই পর্যবেক্ষন ও গাণিতিক সূত্রায়নের মাধ্যমে আকাশের গ্রহ-নক্ষত্রও যে সুনির্দিষ্ট কিছু বৈজ্ঞানিক নিয়মের অধীন, এই সত্য মানুষ জেনে যায়।


কেপলারের সূত্র থেকে জানা যায়, সূর্যের চারপাশে গ্রহগুলো ঠিক কীভাবে ঘুরছে। সমসাময়িক আরেক বিজ্ঞানী গ্যালিলিও রীতিমত পরীক্ষা করে প্রমাণ করেছিলেন, পৃথিবীর আকর্ষণে সব বস্তু ‘একই সাথে' মাটিতে পড়ে, তাদের বেগ বৃদ্ধির হারটি সমান, অর্থাৎ এর পেছনে একটি বল থাকা প্রয়োজন। 

এই দুইটি আপাত আলাদা ঘটনাকে বিজ্ঞানী আইজাক নিউটন মহাকর্ষ বলের চমকপ্রদ ধারণা দিয়ে এক সূত্রে গেঁথেছিলেন। যে বল গাছের আপেল থেকে শুরু করে সুর্যকে ঘিরে গ্রহের ঘূর্ণন দুটিই ব্যাখ্যা করতে পারে। নিউটন শুধু মহাকর্ষ বলের ধারণা দিয়েই থেমে যাননি, তার সূত্রে সেটি পরিমাপের উপায়ও বলে দিয়েছেন।

নিউটনের মহাকর্ষ সূত্র

নিউটনের মহাকর্ষ বলের সূত্রটি এরকম:

নিউটনের মহাকর্ষ সূত্র: 

মহাবিশ্বের প্রতিটি ভরযুক্ত বস্তু একে অপরকে কেন্দ্রের সংযোজক রেখা বরাবর আকর্ষণ করে। এই আকর্ষণ বলের মান বস্তুর ভরের সমানুপাতিক ও দূরত্বের বর্গের ব্যস্তানুপাতিক।


অর্থাৎ m1 এবং m2 ভরের দুটি বস্তু R দূরত্বে অবস্থিত, তাদের পরস্পরের মাঝে যে বলের সৃষ্টি হবে তার পরিমাণ যদি F হয় তাহলে গাণিতিকভাবে,

F = G m1 m2/R2

এখানে G হচ্ছে মহাকর্ষীয় ধ্রুবক, যার মান: 6.67 x 10-11 Nm2kg2। মনে রাখতে হবে, এখানে, mi ভরটি ভরকে নিজের দিকে F বলে আকর্ষণ করে আবার m2 ভরটি নিজের দিকে একই বলে আকর্ষণ করে।

উদাহরণ: পৃথিবীর পৃষ্ঠে রাখা 1 kg ভরের একটি বস্তু পৃথিবীকে কত বলে আকর্ষণ করবে?

 (পৃথিবীর ভর 6x1024 kg ও ব্যাসার্ধ 6.4x10° m)

সমাধান: নিউটনের মহাকর্ষ সূত্র অনুসারে F = G Mm/d2

 =6.67 × 10-11 × 6 × 1024 x 1 / (6.4 x 106 ) 2

=9.8 N

পৃথিবীও কিন্তু ঠিক এই পরিমাণ বলেই বস্তুটিকে নিজের দিকে আকর্ষণ করবে!

ওজনের ধারণা

মহাকর্ষ বলের বেলায় দুটো ভরের একটা যদি পৃথিবী হয় এবং যদি ধরে নিই তার ভর M এবং পৃথিবীর উপরে m ভরের অন্য একটা জিনিস রাখা হয় তাহলে পৃথিবী m. ভরকে তার কেন্দ্রের দিকে F বলে আকর্ষণ করবে।

F= GMm/R2

আসলে, এই বলটিই হলো বস্তুটির ওজন। মনে রাখতে হবে ওজন ভর নয়, ওজন হচ্ছে বল। এখানে R পৃথিবীপৃষ্ঠ থেকে দূরত্ব নয়, পৃথিবীর কেন্দ্র থেকে m ভরটি পর্যন্ত দূরত্ব। যেহেতু পৃথিবীর ব্যাসার্ধ বিশাল (প্রায় 6000 km) তাই আপাতত পৃথিবীর পৃষ্ঠে ছোটখাটো উচ্চতাকে ধর্তব্যের মাঝে আনার প্রয়োজন নেই। (পৃথিবীর কেন্দ্র থেকে দূরত্ব মাপা হয় কারণ পৃথিবীর প্রত্যেকটা বিন্দুই m ভরকে নিজের দিকে আকর্ষণ করে এবং সবগুলো আকর্ষণ একত্র করা হলে গাণিতিকভাবে দেখানো সম্ভব যে পৃথিবীর সমস্ত ভর যেন পৃথিবীর কেন্দ্রবিন্দুতে জমা হয়ে আছে।) এখানে উল্লেখ্য যে পৃথিবীর জন্য মহাকর্ষ বলকে মাধ্যাকর্ষণ বল বলা হয়।

পৃথিবী পৃষ্ঠে m ভরের একটি বস্তু রাখা হলে সেটি পৃথিবীর কেন্দ্রের দিকে যে মাধ্যাকর্ষণ বল অনুভব করবে নিউটনের দ্বিতীয় সূত্র অনুযায়ী এই বলটি বস্তুটির উপরে একটি ত্বরণ সৃষ্টি করবে। মাধ্যাকর্ষণের জন্য যে ত্বরণ হয় সেটাকে a না লিখে g লেখা হয়, কাজেই F = ma এর পরিবর্তে লিখতে পারি:

F = mg

কিংবা, mg = GMm/R2

অর্থাৎ, g = GM/R2

আমরা যদি পৃথিবীর ভর 6x1024 kg, ব্যাসার্ধ 6.4x10° m এবং G এর মান 6.67 x 101 Nm2kg” ব্যবহার করি তাহলে,

g= 6.67 × 10-11 × 6 × 1024/(6.4 x 106)2

= 9.8 ms-2

ইতিপূর্বে মাধ্যাকর্ষণ জনিত ত্বরণের জন্য এই মানটি ব্যবহার করা হয়েছিল, এখন তোমরা নিশ্চয়ই বুঝতে পেরেছ এই মানটি কেমন করে এসেছে।

উদাহরণ: তুমি দোকান থেকে 102 মিলিলিটার পানির বোতল কিনেছ, পানিটুকুর ওজন কত?

সমাধান: যেহেতু পানির ঘনত্ব 1gm/ml, কাজেই 102 ml পানি মানে আসলে 102 gm পানি = 0.102 kg পানি

কাজেই পানিটুকুর ওজন = 0.102 x 9.8 = 1 N

অর্থাৎ, 1 নিউটন বল বোঝাতে আমরা প্রায় এক লিটার পানির ওজনকে বুঝিয়ে থাকি!

১.৭ শক্তি

আগের শ্রেণিতে ইতোমধ্যে আমরা বিভিন্ন শক্তির উদাহরণ জেনেছি। আমরা এটাও জেনেছি যে কাজ করার ক্ষমতাই হচ্ছে শক্তি। তবে এখানে কাজ বলতে আমরা মোটেও আমাদের দৈনন্দিন জীবনে যে কাজ করে থাকি সেগুলো বোঝাচ্ছি না, বিজ্ঞানের ভাষায় কাজ কথাটির একটি সুনির্দিষ্ট অর্থ আছে। এখানে আমরা কাজের সাথে শক্তির কী সম্পর্ক সে বিষয়টি নিয়ে আলোচনা করব।

১.৭.১ গতিশক্তি ও বিভবশক্তি

যদি বল প্রয়োগ করে কোনো বস্তুকে বলের দিকে কিছুটা দূরত্ব সরিয়ে নেওয়া যায় তাহলে ধরে নেওয়া হয় কাজ করা হয়েছে। যদি F বল প্রয়োগ করে কোন বস্তুকে বলের দিকে s দূরত্ব সরিয়ে নেওয়া যায় তাহলে কাজের পরিমাণ,

W = Fs

কাজের একক জুল (j), 1 নিউটন বল প্রয়োগ করে কোনো বস্তুকে 1 m সরিয়ে নিলে 1 J কাজ করা হয়। নিউটনের দ্বিতীয় সূত্র থেকে 

আমরা জানি F = ma, কাজেই আমরা লিখতে পারি,

W = mas

আমরা গতির সমীকরণ থেকে জানি,

v2 = u2 + 2as

যদি স্থির অবস্থা থেকে বস্তুটি শুরু করে থাকে তাহলে আদিবেগ u = 0,

তাহলে v2 = 2as 

এবং as = v2/2

কাজেই কাজের পরিমাণ হবে, w = mas

W = 1⁄2 mv2

যেটি আসলে একটি বস্তুর গতিশক্তি। অর্থাৎ কোন বস্তুর উপর কাজ করা হলে সেই কাজটি গতিশক্তিতে রূপান্তরিত হয়। বাস্তব জীবনে আমরা সবসময় সেটি দেখতে পাই না। কারণ ঘর্ষণ বল বিপরীত দিকে কাজ করে অনেক সময় শক্তিটুকুকে গতিশক্তিতে রূপান্তরিত না করে তাপ, শব্দ ইত্যাদিতে রূপান্তরিত করে ফেলে।

কাজ করে যে শুধু গতিশক্তি তৈরি করা যায় তা নয়, কাজ করে সেই কাজকে বিভব শক্তি হিসেবেও সঞ্চয় করা যায়। তুমি একটি বস্তুকে যদি উপরে তুলতে চাও তাহলে বস্তুটিতে উপরের দিকে বস্তুটির ওজনের সমান বল প্রয়োগ করতে হবে। যদি m ভরের একটি বস্তুকে উপরের দিকে বস্তুর ওজনের সমান বল F = mg প্রয়োগ করে h উচ্চতায় তোলা হয় তাহলে কাজের পরিমাণ হবে:

w = Fh

কিংবা w = mgh

বস্তুটি h উচ্চতায় তোলার পর সেটি সেখানে যেহেতু স্থির অবস্থায় থাকে তাই তার ভেতরে গতিশক্তি নেই, ঘর্ষনের কারণে তাপ কিংবা শব্দ হিসেবে অন্য কোন শক্তিতে রূপান্তরিত হয়নি, কাজেই এই mgh পরিমাণ কাজ শক্তি নিশ্চয়ই আসলে বিভব শক্তি হিসেবে সঞ্চিত হয়ে গেছে। আমরা সেটা বুঝতে পারি অখন দেখি বস্তুটাকে h উচ্চতা থেকে ছেড়ে দিলে সেটি নিচের দিকে পড়ার সময় গতি প্রাপ্ত হতে থাকে এবং সঞ্চিত বিভব শক্তিটি গতি শক্তিতে রূপান্তরিত হতে থাকে।

যান্ত্রিক শক্তির নিত্যতা

আগের শ্রেণিতে আমরা ‘শক্তির নিত্যতা' বিষয়টি জেনেছিলাম। এই নীতি অনুসারে শক্তির সৃষ্টি বা ধ্বংস হয় না, কেবল এক রূপ থেকে অন্যরূপে পরিবর্তন ঘটে। গতিশক্তি ও বিভবশক্তিকে একত্রে 'যান্ত্রিক শক্তি' নামে ডাকা হয়। যান্ত্রিক শক্তি ছাড়া অন্য কোনো উপায়ে শক্তির পরিবর্তন না হলে,নিশ্চয় মোট যান্ত্রিক শক্তির পরিমাণ একই থাকবে। এই বিষয়টাকে আমরা ‘যান্ত্রিক শক্তির নিত্যতা' বলতে পারি। আমরা একটি বস্তুকে কিছু দূরত্বে উপরে উঠিয়ে নিচে ফেলে দিলে সেটি গতিশীল হতে থাকবে। শুরুতে বস্তুটির কোনো গতি নেই, তাই পুরোটাই বিভবশক্তি। একটু পরে নিচে নামার ফলে উচ্চতা কমে গেলে বিভবশক্তি কমবে, অন্যদিকে গতি বাড়বে তাই গতিশক্তি বাড়তে থাকবে। এভাবে যখন একেবারে নিচে এসে পড়বে তখন দেখা যাবে পুরোটাই গতিশক্তি। 

অর্থাৎ, যেটুকু বিভবশক্তি খরচ হয়েছে, ঠিক সেটুকু গতিশক্তিই অর্জিত হয়েছে। এটিই হচ্ছে যান্ত্রিক শক্তির নিত্যতা!

উদাহরণ: একটি বস্তুকে চিত্রের A বিন্দু থেকে ফেলে দেয়া হল। A, B এবং C বিন্দুতে বস্তুটির মোট শক্তি কত?



সমাধান: A বিন্দুতে

বিভবশক্তি mgh = 5 x 9.8 x 4 = 196 J

গতিশক্তি 1⁄2 mv2 = 2 x 5 x 0 = 0 J

মোটশক্তি mgh + 1⁄2 mv2 = 196 + 0 = 196 J

B বিন্দুতে

v2 = u2 + 2as, বা, v2 = 02 + 2 x 9.8 x 2, বা, v2 = 39.2 ms-1

বিভবশক্তি mgh = 5 x 9.8 x 4 = 98 J

গতিশক্তি 1⁄2 mv2 = 2 x 5 x 0 = 98 J

মোটশক্তি  mgh + 1⁄2 mv2 = 98 + 98 = 196 J

C বিন্দুতে

v2 = u2 + 2as, বা, v2 = 02 + 2 x 9.8 x 4, বা, v = 78.4 ms-1

বিভবশক্তি mgh = 5 x 9.8 x 0 = 0 J

গতিশক্তি 1⁄2 mv2 = 1 x 5 x 78.4 = 196 J

মোটশক্তি mgh + 1⁄2 mv2 = 0 + 196 = 196 J

অর্থাৎ, আমরা একটি নির্দিষ্ট উদাহরণে হিসেব করে দেখে ফেলেছি যান্ত্রিক শক্তির নিত্যতা আসলেই বজায় থাকে। একটি উচ্চতা থেকে কিছু ফেলে দেওয়া হলে উচ্চতার সাথে বিভব শক্তি এবং গতি শক্তি কীভাবে পরিবর্তিত হয় কিন্তু মোট শক্তি যে পরিবর্তিত হয় না সেটি পাশের গ্রাফে দেখানো হয়েছে।


চিন্তার খোরাক:

 উচ্চতার পরিবর্তে সময়ের বিপরীতে এই গ্রাফটি আঁকা হলে সেটি দেখতে কেমন হত?

আর পড়ুন:আধুনিক পদার্থবিজ্ঞান এর কুইজ 




এই পোস্টটি পরিচিতদের সাথে শেয়ার করুন

পূর্বের পোস্ট দেখুন পরবর্তী পোস্ট দেখুন
এই পোস্টে এখনো কেউ মন্তব্য করে নি
মন্তব্য করতে এখানে ক্লিক করুন

অর্ডিনেট আইটির নীতিমালা মেনে কমেন্ট করুন। প্রতিটি কমেন্ট রিভিউ করা হয়।

comment url